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Abstract 
Learning domain theories is an important challenge for 
qualitative reasoning.   We describe a method for learning 
new domain theories by analogy.  We use analogies 
between pairs of problems and worked solutions to create a 
mapping between the familiar and the new domains, and 
use this mapping to conjecture general knowledge about the 
new domain.  After some knowledge has been learned about 
the new domain, another analogy is made between the 
domain theories themselves providing conjectures about the 
new domain.  An experiment is described where the system 
learns to solve rotational kinematics problems by analogy 
with translational kinematics problems, outperforming a 
version of the system that is incrementally given the correct 
domain theory. 

Introduction  
Progress in qualitative reasoning has led to a variety of 
techniques for model formulation, making predictions, 
performing diagnosis, and handling other tasks.  However, 
little effort has focused on the process of learning domain 
theories.  To be sure, in some cases hand-engineering 
domain theories is sufficient.  However, this can be a very 
time-consuming process, requiring considerable effort.  
Being able to re-use this investment by automatically 
constructing theories for similar domains could be of great 
practical value.   Furthermore, there is ample evidence that 
people heavily use analogy to learn new domains (Gentner 
& Gentner 1983; Gentner 2003).  Systems that learn 
domain theories by analogy could be used to model human 
learning. 

Falkenhainer’s (1988) PHINEAS system was the first 
QR system to address this problem.  Based on the 
hypothesis that diagnosis, explanation and theory 
formation are all intertwined, PHINEAS used similarity-
driven explanation to show how analogy can be used to 
develop new theories about specific situations.  As a 
learning agent works in a new domain, it should be able to 
transfer knowledge from previous well understood 
domains.  Falkenhainer called the inability to offer a best 
guess or apply knowledge across domains the adaptability 
problem.   
 Textbook authors routinely exploit human adaptability 
(Shive & Weber 1982).  In the linear kinematics section of 
the textbook used for this study (Giancoli 1991), there are 
eight worked out examples, worked solutions, which show 

all of the different ways in which the four linear kinematics 
equations can be used.  But in the later rotational 
kinematics section, there are only two worked solutions.  
Furthermore, two of the rotational kinematics equations are 
not part of any worked solutions in the book. The summary 
section of rotational motion chapter invites the learner to 
use analogy to fill in the details: “The dynamics of rotation 
is analogous to the dynamics of linear motion” (p. 197, 
Giancoli 1991).  This is common practice in textbooks, and 
analogies between domains form the basis of system 
dynamics (Olson 1966; Shearer et al. 1967). 

This paper describes how analogies between worked 
solutions can be used to learn domain theories.  Our 
strategy is itself analogous to that used in PHINEAS, 
which used comparisons of (simulated) behavior to create 
an initial cross-domain mapping that was subsequently 
used to create a partial theory for the new domain.  It 
differs, however, in several significant ways: (1) We use 
analogies between worked solution pairs to drive the 
process, (2) We are learning quantitative, rather than 
qualitative, domain theories, which requires very different 
verification work, and (3) We are using a more 
psychologically plausible retrieval mechanism.  While our 
current work focuses on quantitative domain theories, our 
method should also be usable for qualitative domain 
theories as well. 
 We start by describing our representations and problem-
solver.  Next we review the ideas of structure-mapping 
theory and our computational models which are used in 
this work.  Then we describe our learning method, and 
present an experiment showing that it can learn rotational 
kinematics by analogy with translational kinematics, and 
do so faster than a system that is told the laws of the 
domain incrementally.  We close with a discussion of 
related work and future plans. 

Representation and Problem Solving 
Representing physics problems requires a broad 
background of everyday knowledge, including the object 
and event types found in such problems.  We use the 
ResearchCyc1 knowledge base contents, augmented with 
our own extensions, as our starting point.   Our extensions 
                                                 
1 http://research.cyc.com/ 
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concern QP theory (Forbus 1984) and problem-solving 
strategies, and are small compared to the 30,000+ concepts 
and 8,000+ predicates already defined in the KB.  Thus, 
objects, relations, and events that appear in physics 
problems such as “rotor”, “car”, and “driving” are already 
defined in the ontology for us, rather than being created 
specifically for this project. 

Example Problem and Worked Solution 
All problems and worked solutions used in this work were 
taken from the same physics textbook (Giancoli 1991).  
Problems are defined as cases.  Consider the problem of 
“How long does it take a car to travel 30m if it accelerates 
from rest at a rate of 2 m/s2?” (Example 2-6, p. 26).  This 
problem is represented in our system as a case of 10 facts, 
a subset of which appears in Figure 1. 
 Worked solutions are represented at the level of 
examples found in textbooks, which is more abstract than a 
proof or problem-solving trace.  For example, the worked 
solution for problem 2-6 consisted of four steps:  

1. Categorize the problem as a constant acceleration 
linear mechanics problem 

2. Instantiate the distance by velocity time equation (d = 
vit + .5at2) 

3. Because the car is stationary at the start of the event 
infer that its velocity is zero (vi = 0 m/s) 

4. Solve the equation for t (t = 5.8s) 
Figure 2 shows how step 3 is represented. 

Domain Theories 
Our domain theories consist of encapsulated histories 
(Forbus 1984) representing equations.  Encapsulated 
histories are templates describing pieces of histories 
(Hayes 1978).  They were motivated by two concerns.  
First, some phenomena are best described by discontinuous 

patterns of events (e.g., collisions).  Second, they permit 
constraints to be placed on time itself, which is not 
possible for model fragments, given their semantics (i.e., 
time is implicit, and their consequences hold throughout 
whatever period they are active).  Equations like the 
velocity/time law above hold over events (e.g., 
translational motion under constant acceleration), and 
hence encapsulated histories are the appropriate 
mechanism for describing the conditions under which they 
hold. 
 Figure 3 illustrates the encapsulated history representing 
the equation of velocity as a function of time (vf=vi+at).  
There are two participants, theObject and theEvent, 
which must satisfy their type constraints, the abstractions 
PointMass and Constant1DAccelerationEvent 
respectively.  Furthermore, the conditions of the 
encapsulated history must be satisfied in order to 
instantiate it and conclude its consequences.  In this case, it 
is necessary that theObject be the object moving in 
theEvent.  The compound form shown in Figure 3 is 
automatically translated into a set of predicate calculus 
facts.  While the consequence of this encapsulated history 
is a quantitative equation, the same representation could be 
used to represent qualitative relationships.  Similarly, this 
technique should be adaptable to learning model fragments 
as well. 

Solving a Problem 
Our system solves for quantities in three ways.  First, the 
quantity may already be known as part of the problem.  
Second, rules can be used to apply modeling assumptions, 
i.e., “Objects at rest have no velocity”.  Third, an 
encapsulated history may be instantiated that results in an 
equation containing the sought after quantity.  This is done 
by satisfying the participant constraints and the 
encapsulated history conditions statements in the problem.  
Once the encapsulated history has been instantiated, the 
system solves for the other quantities in the equation, and 
then attempts to solve the equation for the original 
parameter.  The algebra routines are based upon the system 
in Forbus and de Kleer (1993).  Both the problem-solving 
strategies and the mathematics knowledge are fixed in the 
current system, and cannot be extended via learning.  

(isa Car-2-6 Automobile) 
(isa Acc-2-6 

TransportWithMotorizedLandVehicle) 
(objectStationary (StartFn Acc-2-6) Car-2-6) 
(primaryObjectMoving Acc-2-6 Car-2-6) 
(valueOf  

((QPQuantityFn Distance) Car-2-6 Acc-2-6) 
(Meter 30)) 

… 
(query (valueOf ((QPQuantityFn Time-Quantity) 

Acc-2-6) Duration-2-6)) 
 

Figure 1: Problem 2-6 Representation (sample)

(def-encapsulated-history 
 VelocityByTime-1DConstantAcceleration 
  :participants  
 ((theObject :type PointMass) 
  (theEvent  :type Constant1DAccelerationEvent)) 
 :conditions 
 ((primaryObjectMoving theEvent theObject)) 
 :consequences 
 ((equationFor VelocityByTime 
  (mathEquals  
   (AtFn (Speed theObject) 
        (EndFn theEvent))  
      (PlusFn (AtFn (Speed theObject) 
         (StartFn theEvent)) 
    (TimesFn  
     (AtFn (Acceleration theObject) theEvent) 
        (Time-Quantity theEvent))))))) 

 
Figure 3: Example Encapsulated History 

(isa Gia-2-7-Step-3 WorkedSolutionStep) 
(hasSteps Gia-2-7-WS Gia-2-7-Step-3) 
(priorStep Gia-2-7-Step-3 Gia-2-7-Step-2) 
(stepType Gia-2-7-Step-3 AssumingValue) 
(stepUses Gia-2-6-WS-Step-3 
 (objectStationary (StartFn Acc-2-6) Car-2-6)) 
(stepResult Gia-2-6-WS-Step-3 
 (valueOf 

(AtFn ((QPQuantityFn Speed) Car-2-6) 
(StartFn Acc-2-6)) 

  (MetersPerSecond 0))) 
Figure 2: Problem 2-6 worked solution step 3



Structure-mapping and Analogy 
We use Gentner’s (1983) structure-mapping theory, which 
postulates that analogy and similarity are based on 
structural alignment between two structured 
representations (the base and target) to find the maximal 
structurally consistent match between them.  A structurally 
consistent match must satisfy the constraints of tiered-
identicality, parallel connectivity, and one-to-one 
mapping.  Tiered-identicality constraint provides a strong 
preference for only allowing identical predicates to match, 
but allows for exceptions, when doing so would enable a 
much larger structure to match.  The parallel connectivity 
constraint says that if two statements are matched then 
their arguments must also match.  One-to-one mapping 
constraint requires that each element in the base 
corresponds to at most one element in the target, and vice 
versa.  To explain why some analogies are better than 
others, structure-mapping uses the principle of 
systematicity: a preference for mappings that are highly 
interconnected and contain deep chains of higher order 
relations. 
 The Structure Matching Engine (SME) simulates the 
process of analogical matching between a base and target 
(Falkenhainer et al. 1989). The output of this process is 
one or more mappings.  A mapping is a set of 
correspondences representing a construal of what items 
(entities and expressions) in the base go with what items in 
the target.  Mappings include a structural evaluation score 
indicating the strength of the match, and candidate 
inferences which are conjectures about the target using 
expressions from the base which, while unmapped in their 
entirety, have subcomponents that participate in the 
mapping’s correspondences. SME operates in polynomial 
time, using a greedy algorithm (Forbus & Oblinger, 1990). 
 MAC/FAC (Forbus et. al. 1994) models similarity-based 
retrieval.  The inputs are a case, the probe, and a library of 
cases.  The first stage (MAC) uses a computationally 
cheap, non-structural matcher to filter candidates from a 
pool of memory items, returning up to three if they are 
very close.  The second stage (FAC) uses SME to compare 
the cases retruned by MAC to the probe and returns the 
best candidate (or candidates, if they are very similar).  
Both SME and MAC/FAC have been used as performance 
systems in a variety of domains and as cognitive models to 
account for a variety of psychological results (Forbus 
2001). 

Different domains are often represented using different 
predicates, especially when they are first being learned and 
underlying commonalities with previous knowledge have 
not yet been found.  Minimal ascension (Falkenhainer 
1988) is one method for matching non-identical predicates.  
If two predicates are part of a larger aligned structure and 
share a close common ancestor in the taxonomic hierarchy, 
then SME can include them in the mapping.  For example, 
given the statements in Figure 4, if the stepUses 
statements are aligned as well as the Step-Base and Step-

Target, Obj-Base and Obj-Target, and Event-Base and 
Event-Target, then SME will attempt to match 
primaryObjectMoving with objectRotating.  They are 
siblings in the ResearchCyc ontology, and hence minimal 
ascension allows them to be placed into correspondence. 

 

Analogical Learning of Domain Theories 
Our system learns a domain theory by using multiple 
analogies.  Learning is invoked when it fails to solve a 
problem.  After failing to solve a problem, the system is 
given a worked solution for that problem, as a student 
might get out of a textbook.  It uses this worked solution to 
create conjectures about knowledge in the new domain, 
using the algorithm outlined in Figure 5.  The case library 
contains a set of worked solutions from the known domain.  
First, the worked solution for the failed problem is used as 
a probe to MAC/FAC, to retrieve an analogous worked 
solution from memory.  A comparison is made using SME, 
with the retrieved worked solution constituting the base 
and the worked solution for the failed problem as the 
target.  The mappings SME produces are then combined to 
create a domain mapping.  The reason for combining 
multiple mappings is that each mapping often covers only 
some aspects of the solution.  The best mapping is used as 
a starting point, with correspondences drawn from the 
others included only if they do not violate the one-to-one 

1. Retrieve analog using the target worked solution as a 
probe in MAC/FAC 

2. Use SME to create a match between the analog and the 
worked solution 

3. Retrieve correspondences from resulting mappings  
4. Create domain mapping by selecting correspondences in 

which the base element appears in the base domain 
theory 

5. Initialize target domain theory using these 
correspondences 

6. Use SME to create a match between the base and the 
target theories constrained by the domain mapping 

7. Transfer domain theory using the candidate inferences 
8. Verify learned domain theory by attempting the failed 

problem again 
9. If failure, go once more to step 1.  Otherwise, accept new 

target domain knowledge as correct 
 

Figure 5: Analogical Domain Learning 

Base Expression:
(stepUses Step-Base 
  (primaryObjectMoving Event-Base Obj-Base)) 
Target Expression: 
(stepUses Step-Target 
  (objectRotating Event-Target Obj-Target)) 
 

Figure 4: Minimal Ascension maps 
primaryObjectMoving to objectRotating



constraint. 
 When the system gets the first problem in a new 
domain, its theory for that domain is empty.  The candidate 
inferences for the domain mapping thus become the basis 
for a new domain theory.  We currently require that every 
concept in the encapsulated history is mentioned in the 
domain mapping, i.e., there are no analogy skolems where 
we must postulate a new predicate or category of entity.  If 
there is enough similar structure between the worked 
solutions, at least one encapsulated history will be created.  
If no encapsulated histories can be created due to an 
inability to find a satisfactory domain mapping, the system 
does not try to learn anything from this particular failure.   

The system also extends a partially learned, or just 
initialized, domain theory with another analogy.  The 
domain mapping becomes required correspondence 
constraints of a new analogy between the base and target 
domain theories themselves, ensuring that the overall 
domain theory is consistent.  As before, any encapsulated 
history imported into the target becomes a conjecture about 
the new domain theory. 
 While powerful, analogies are not guaranteed to be 
sound.  Consequently, we verify the newly proposed 
domain knowledge by trying again to solve the problem 
whose failure motivated the learning.  If this problem is 
solved correctly, our system assumes that the new domain 
theory constructs are correct.  Otherwise, it deletes both 
the new domain theory constructs and the domain 
mapping.  Then, it tries one more time, considering the 
next best worked solution retrieved from memory.   

Experiment 
To examine how well this analogical learning method 
works, we need a baseline.  Our baseline spoon-fed system 
consists of the same problem-solver, but with analogical 
learning turned off.  When it receives a problem it cannot 
solve, it is given not just a worked solution, but whatever 
general encapsulated histories are needed to solve that 

specific target domain problem.  In other words, it is given 
the correct knowledge, in its internal representations, ready 
for future use.  This makes for a tough comparison, since 
our system in the analogy condition must figure out the 
encapsulated histories for itself.   

Method 
Both systems begin with a linear kinematics domain 
theory, two worked solutions of linear kinematics 
problems, and hard-coded rules for problem-solving 
strategies and making modeling decisions.  The systems 
are then tested on how quickly they can learn rotational 
kinematics problems.  The testing materials are 5 
problems, listed in Figure 6, and worked solutions.  
Learning curves were created by running 120 trials 
representing every possible ordering of the test materials.  
In each trial, after each problem, the system was given 
either the worked solution or encapsulated histories for 
that problem, depending on the condition.  After each trial, 
the system’s knowledge was reset. 
 

Results 
Figure 7 compares the learning curves for the analogy and 
baseline conditions.  After studying just one worked 
solution, the analogy system was able to solve next 
problem correctly 80 percent of time.  Furthermore, the 
analogy system has perfect performance after working on 
just two problems.  The baseline system’s ceiling was at 80 
percent, and after one problem it was only able to get the 
next problem correct 45 percent of the time. 
 Further analysis of these results details the strength of 
the analogy approach.  The baseline system failed to score 
above 80 percent of any of the conditions. The baseline 
system was unable to solve problem ‘b’ from Figure 6 
regardless of what problems it has already seen, because 
none of the other problems use the same equation.  The 
analogy system performed quite well, only in one situation 

a) Through how many turns does a centrifuge rotor 
make when accelerating from rest to 20,000 rpm 
in 5 min? Assume constant angular acceleration 

b) A phonograph turntable reaches its rated speed of 
33 rpm after making 2.5 revolutions, what is its 
angular acceleration? 

c) Through how many turns does a centrifuge rotor 
make when accelerating from rest to 10,000 rpm 
in 270 Seconds? Assume constant angular 
acceleration 

d) An automobile engine slows down from 3600 rpm 
to 1000 rpm in 5 seconds, how many radians does 
the engine turn in this time? 

e) A centrifuge rotor is accelerated from rest to 
20,000 rpm in 5 min, what is the averaged angular 
acceleration? 

Figure 6: Test Problem Set 

Rotational Kinematics Learning Curves
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did the analogical domain transfer fail to learn the whole 
rotational kinematics domain after just one worked 
solution.  This occurred when problem ‘b’ was the first 
problem.  Problem ‘b’ makes no mention of a time quantity 
preventing a correspondence to be created for it.  While a 
time quantity exists in both of these domains, it does not 
necessarily mean they should be aligned.  The strength of 
the analogical approach is that transfer is guided by 
structural similarity.  This is critical for broader application 
of this theory.  For example, in linear and rotational 
dynamics, both domain theories have a mass quantity, but 
transfer is only possible when a domain mapping is made 
between mass, in linear dynamics, and moment of inertia, 
in rotational dynamics. (e.g. F=ma and T=Iα) 

Related Work 
As noted above, the closest work is Falkenhainer’s 
PHINEAS (1988), which learned qualitative descriptions 
of processes based on analogies involving behaviors.  
PHINEAS used envisioning to verify its conjectures, 
whereas we use mathematical problem solving.  Klenk & 
Forbus (2007) describe a system that learns by 
accumulating examples to solve AP physics problems 
within the same domain.  Klenk et al. (2005) describe a 
system that learns causal models via analogies involving 
sketches annotated with causal knowledge.  Both of these 
systems only learn within the same domain, and neither 
constructs general domain theories, unlike the system 
described here.  Silver (1986) used explanation-based 
learning to acquire new mathematical skills, by contrast 
our system’s mathematical knowledge is hard-wired. 
 In the QR community, de Kleer’s work (1977) in 
reasoning on sliding motion problems demonstrated that 
qualitative reasoning was required for solving many 
quantitative physics problems.  More recent AI work on 
transfer learning has recognized the importance of 
generating mappings between domains to allow for 
knowledge transfer, Liu and Stone (2006) use a version of 
SME to accelerate learning of state action policies in keep 
away soccer.  Instead of using structure-mapping to 
accelerate learning, we use structure-mapping to learn new 
general domain concepts. 

Discussion 
We have shown that a domain theory for solving physics 
problems can be learned via cross-domain analogies.  Our 
experiment shows furthermore that such analogical 
learning can be very efficient, when the two domains are 
sufficiently similar.  The process of constructing domain 
mappings by exploiting similarities in worked solutions, 
and using that to import theories from one domain to 
another, is, we believe, a general and powerful process. 

There are several directions we intend to pursue next.  
First, we have only tested this method with encapsulated 
histories, so we want to extend it to handle other types of 

domain knowledge.  Based on experience in other 
analogical learning tasks, we believe that this will mainly 
involve figuring out the appropriate verification 
techniques.  Second, we plan to integrate this algorithm 
into the Companion-based learning system of Klenk & 
Forbus (2007), so that we can combine both ways of 
analogical learning.  We plan to explore a broader range of 
domain pairs, including domains which are quite distant, to 
explore better strategies for making use of weaker 
matches.  We suspect that model-based diagnosis 
techniques could be used to debug analogically-derived 
domain theories, based on their success with diagnosing 
misconceptions in student models (de Koning et al. 2000).   
 We also expect that these techniques could be used more 
broadly in the QR community for accelerating the process 
of constructing domain theories.  That is, given modeling 
environments designed to help domain experts create 
theories (cf. Bredeweg et al. 2006), there should be a 
growing library of domain theories to draw upon.  An 
analogy-based assistant could help spot cross-domain 
connections, accelerating the process of constructing new 
domain theories. 
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